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Abstract. We show that algebraic approximants prove suitable for the summation of the perturbation
series for the eigenvalues of periodic problems. Appropriate algebraic approximants constructed from the
perturbation series for a given eigenvalue provide information about other eigenvalues connected with the
chosen one by branch points in the complex plane. Such approximants also give those branch points with
remarkable accuracy. We choose Mathieu’s equation as illustrative example.

PACS. 03.65.Ge Solutions of wave equations: bound states – 32.60.+i Zeeman and Stark effects

1 Introduction

Perturbation theory is one of the most widely used approx-
imate methods in quantum mechanics. It was applied to
most fundamental problems at the very dawn of wave the-
ory. In addition to its intrinsic simplicity, a strong appeal
of perturbation theory is that it provides useful analytical
expressions for the properties of a number of physically
motivating models. For that reason such an approach is
commonly discussed in most textbooks on quantum me-
chanics and quantum chemistry.

In order to perform accurate numerical perturbation
calculations it is necessary to obtain sufficient pertur-
bation coefficients, and to sum the series. It likely hap-
pens that the perturbation expansion is either divergent
or slowly convergent; for that reason many general and
particular approaches are currently available to overcome
such problems [1]. Recently, there has been great inter-
est in algebraic approximants that are implicit polynomial
approximations to multiple-valued functions constructed
from their Taylor series [2–4]. The well-known Padé ap-
proximants [5] are the linear version of algebraic approxi-
mants; those of higher degree prove more suitable for the
treatment of complex functions with real perturbation se-
ries. For example, such algebraic approximants enable an
adequate description of multiple-valued functions, reso-
nance energies, and branch points [2–4].
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The radius of convergence of a perturbation series is
typically limited by square-root branch points, where two
eigenvalues merge at complex values of the perturbation
parameter which is commonly real in the physical appli-
cation. Because such eigenvalues are therefore branches
of a multiple-valued function, one expects that an ade-
quate approximation based on the perturbation series for
one of the eigenvalues gives results for both of them. Such
a possibility has not been taken into account in current
practical applications of perturbation theory, except for
some recent treatment of anharmonic oscillators [3].

The purpose of this paper is to show that algebraic
approximants properly constructed from the perturbation
series for a given eigenvalue provide results also for other
eigenvalues that merge with it. In order to illustrate this
striking feature of the algebraic approximants we choose
Mathieu’s equation because it has been widely studied,
its main properties are well-known, and there are many
results available for comparison [6–10]. We believe that
Mathieu’s equation provides a more dramatic example
than the anharmonic oscillators; notice that both mod-
els differ substantially because the characteristic values of
the former have finite radii of convergence.

In Section 2 we briefly review the construction of a
particular class of algebraic approximants, in Section 3
we outline those properties of Mathieu’s equation that are
relevant for the present paper and show results of the ap-
plication of algebraic approximants to the perturbation
series for some characteristic values.
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2 Algebraic approximants

Perturbation theory provides an approximation to a phys-
ical quantity E in the form of a power series of a pertur-
bation parameter λ:

E =
∞∑
j=0

Ejλ
j . (1)

Sometimes this perturbation expansion is either divergent,
slowly convergent, or its radius of convergence is too small
for the physical application. In such a case one resorts to
one of the many methods that improve the convergence
properties of power series. Here we are concerned with
algebraic approximants that are implicit expressions of the
form [3]

N∑
n=0

pn(λ)En = 0, pn(λ) =
Mn∑
m=0

pnmλ
m. (2)

We choose the independent adjustable parameters pnm in
such a way that one of the roots of equation (2) satisfies

E =
P∑
j=0

Ejλ
j +O(λP+1), P = N +

N∑
n=0

Mn − 1. (3)

This condition completely determines the value of all those
coefficients.

The root of equation (2) that satisfies (3) provides an
approximation to E(λ) that is much more accurate than
the partial sum (3). As P increases the estimate given
by the algebraic approximant may converge to the actual
value of E(λ) even when the radius of convergence of the
original perturbation series (1) is zero [2–4].

Padé approximants, by far the most popular algebraic
approximants, are the linear version of equation (2), which
follows when N = 1 [5]. These approximants are not
suitable for the description of a function E(λ), with real
Taylor coefficients Ej , that yields complex values for real
λ. In such a case algebraic approximants of higher degree
(N > 1) may give the right answer [2–4].

When N > 1 the approximate value of E(λ) is given
by the root that satisfies (3); the remaining roots may
be spurious or may represent meaningful branches of the
function E(λ) [2,3].

One can construct many algebraic approximants of the
form (2) from the same partial sum (3). In some cases
trial and error is the only way to determine a convergent
sequence [3], in others it is possible to profit from infor-
mation about the function E(λ) in order to restrict the
enormous flexibility of the algebraic approximants. For ex-
ample, suppose that the unknown function E(λ) satisfies
another expansion of the form

E(λ) = λα
∞∑
j=0

ejλ
−βj , α, β > 0. (4)

In such a case one may force the roots of the algebraic
approximants to obey equation (4) even when one does
not know the actual value of the coefficients ej.

Extensive and judicious numerical investigation of the
application of algebraic approximants to the Rayleigh-
Schrödinger perturbation series for anharmonic oscillators
showed that only those algebraic approximants with roots
that behave asymptotically as e0λ

α converged towards
the actual eigenvalues [3]. Such results have led to think
that the best algebraic approximants are those that ex-
hibit roots that behave asymptotically as shown by equa-
tion (4). Such particular algebraic approximants, which
have been named intelligent, have proved to give accurate
results for anharmonic oscillators [4], and simpler versions
of them were applied to the Zeeman effect in hydrogen
some time ago [11].

The intelligent approximants studied so far are of the
form
M∑
m=0

Jm∑
j=0

Cmjλ
mEN−(m+jβ)/α = 0, Jm = [(αN −m)/β],

(5)

where [x] denotes the greatest integer smaller than or
equal to x. The condition that a Taylor expansion of a
root of this approximant gives the partial sum (3) of or-
der

P = M − 1 +
M∑
m=0

Jm, (6)

completely determines the coefficients Cmj as solutions
of a system of linear equations. We do not show it here
because its derivation is straightforward; suffice to say that
it gives the Cmj ′s in terms of the Ej ′s.

Substituting λαW for E into equation (5) and dividing
the resulting expression by λαN we obtain

M∑
m=0

Jm∑
j=0

Cmjλ
−jβWN−(m+jβ)/α = 0, (7)

which shows that the roots of the approximant (5) can
also be expanded as

E = λα
∞∑
j=0

Wjλ
−jβ . (8)

If the coefficients Wj approach the coefficients ej of the
expansion (4) as P (and thereby M and N) increases,
then we expect the intelligent approximants to give E(λ)
accurately for all values of λ.

3 Mathieu’s equation

For the present investigation we choose Mathieu’s equa-
tion because there is much information about its solu-
tions [6–10]. Mathieu’s equation exhibits many physical
applications in various fields and is commonly written in
several different ways; here we adopt one of the most pop-
ular forms [7]:

Y ′′(x) + [a− 2q cos(2x)]Y (x) = 0. (9)



F.M. Fernández and C.G. Diaz: Perturbation series for periodic eigenvalue problems 43

Table 1. Characteristic values a2m(q = 0) = 4m2 from intelligent approximants IA[M, 2M ] constructed by means of the
perturbation series for a0.

M a0 a2 a4 a6 a8 a10 a12

1 0 4.571428571

2 0 3.999988900 17.22312897 40.41373362

3 0 4.000000000 15.99860111 38.30568114 69.27730642 113.5096445

4 0 4.000000000 15.99999983 36.03235035 60.28735302 109.7781708

5 0 4.000000000 16.00000000 36.00001544 64.24016225 91.35774738 146.6106583

6 0 4.000000000 16.00000000 36.00000000 64.00001914 100.1287412 139.7666807

7 0 4.000000000 16.00000000 36.00000000 63.99999991 100.0008080 143.7082723

8 0 4.000000000 16.00000000 36.00000000 64.00000000 100.0000009 143.9827301

9 0 4.000000000 16.00000000 36.00000000 64.00000000 100.0000000 143.9999978

There are four types of periodic solutions that admit
Fourier expansions of the form [7]

Y (x) =
∞∑
m=0

A2m+p cos[(2m+ p)x],

a = a2m+p, p = 0, 1, (10)

Y (x) =
∞∑
m=0

B2m+p sin[(2m+ p)x],

a = b2m+p, p = 0, 1. (11)

It is not our purpose to summarize all the properties of
Mathieu’s equation and its characteristic values a(q) that
one encounters elsewhere [6,7]. Suffice to say that straight-
forward perturbation theory yields approximate solutions
in the form of power series:

Y (q, x) =
∞∑
j=0

Yj(x)qj , a(q) =
∞∑
j=0

cjq
j , (12)

and that the calculation of as many exact perturbation co-
efficients Yj(x) and cj as desired offers no difficulty. This
is another reason for choosing Mathieu’s equation in the
present investigation. One finds the first coefficients of the
perturbation series (12) for the four types of periodic so-
lutions (10, 11) in current literature [6,7].

In addition to the q-power series the characteristic val-
ues can also be expanded as [6,10]

a(q) = q
∞∑
j=0

wjq
−j/2 = q[−2 + 2(2n+ 1)q−1/2

− 1
4

(2n2 + 2n+ 1)q−1 + . . . ], n = 0, 1, . . . (13)

Consequently, we can build intelligent approximants as
indicated in the preceding section for E = a. Because
a2m(−q) = a2m(q) and b2m(−q) = b2m(q) the perturba-
tion coefficients of odd order for these characteristic values
vanish [6,7]. Choosing the perturbation parameter to be
λ = q2 we realize that α = 1/2 and β = 1/4. In order to
avoid the fractional powers of E that will otherwise ap-
pear in the algebraic approximants (5) we set Cm 2j+1 = 0.

As we will shortly see, the fact that the variable of the
asymptotic expansion of the roots of the intelligent ap-
proximants results to be q−1 instead of q−1/2 does not
affect the results unfavorably, and we gain some simplic-
ity in the calculation. The remaining characteristic values
satisfy a2m+1(−q) = b2m+1(q) and λ = q is a suitable
perturbation parameter for them. In this case α = 1 and
β = 1/2, and again we avoid the occurrence of fractional
powers of E exactly as discussed above.

The perturbation series for the characteristic values of
Mathieu’s equation have finite radii of convergence deter-
mined by square-root branch points at which a pair of
characteristic values cross in the complex q plane. For ex-
ample, it has been found that a2m+p = a2m+p+2, where
m = 0, 1, . . . , and b2m+p = b2m+p+2, where m = 1, 2, . . . ,
at those branch points. Accordingly, we can view the char-
acteristic values as branches of a multiple-valued func-
tion a(q) = E(λ), and expect that the intelligent ap-
proximants constructed from the perturbation series for
a given characteristic value (for example a2m) give re-
sults for other characteristic values corresponding to so-
lutions of the same symmetry and period. From now on
IA[M,N ] will denote an intelligent approximant of de-
grees M and N . In particular we concentrate on the case
N = 2M which requires a perturbation series of order
P = (M + 1)2 − 2 when α = 1/2 and β = 1/4.

We first consider intelligent approximants constructed
from the perturbation series for the characteristic value
a0. Table 1 shows roots of the approximants IA[M, 2M ]
for q = 0 that converge towards a2m(q = 0) = 4m2, m =
0, 1, . . . as M increases. Obviously, by construction the
case m = 0 is exact for all values of M . Table 2 com-
pares roots of the intelligent approximant IA[7, 14] with
the first characteristic values a2m obtained by means of
a reliable nonperturbative calculation. The latter consists
of solving A2k(a, q) = 0 for increasing values of k till all
the selected roots become stable to a given accuracy. We
have purposely chosen q-values that appear in current lit-
erature [7] in order to verify present perturbative and non-
perturbative results.

We clearly see that the roots of the intelligent approxi-
mants converge, not only to the characteristic value chosen
to construct them (a0 in the cases above), but also to all
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Table 2. Characteristic values a2m(q) from the intelligent approximant IA[7, 14] constructed by means of the perturbation
series for a0. The second value for each entry comes from a nonperturbative method.

q a0 a2 a4 a6 a8 a10

5 −5.800046021 7.449109740 17.09658168 36.36089998 64.19884 100.127

−5.800046021 7.449109740 17.09658168 36.36089998 64.19884239 100.1263692

10 −13.93697996 7.717369850 21.10463371 37.53360634 64.80089 100.508

−13.93697996 7.717369850 21.10463371 37.53360634 64.80089101 100.5067700

15 −22.51303776 5.077983198 25.37506106 39.96816628 65.82799 101.146

−22.51303776 5.077983198 25.37506106 39.96816628 65.82799493 101.1452034

20 −31.31339007 1.154282885 27.59457815 44.06294865 67.34588 102.050

−31.31339007 1.154282885 27.59457815 44.06294865 67.34587524 102.0489160

25 −40.25677955 −3.522164727 27.80524058 48.97578672 69.52407 103.231

−40.25677955 −3.522164727 27.80524058 48.97578672 69.52406517 103.2302048

the other characteristic values (corresponding to the same
parity and period) of which the approximants have re-
ceived no information whatsoever. The conclusion is that
the intelligent approximants already approach a multiple-
valued function whose branches are the characteristic val-
ues of Mathieu’s equation. As expected the accuracy of
the estimated a2m decreases as m increases.

In order to verify if intelligent approximants are re-
ally the most accurate algebraic approximants that one
can build for a given problem, we have constructed di-
agonal staircase sequences of algebraic approximants la-
belled by two subscripts, m (the order of the polynomial
function of E) and n (determined by the order of the
perturbation series used in the construction) [3]. For a
given value of n the accuracy of the algebraic approxi-
mants increases, reaches a maximum, and then decreases
as m increases. Figure 1 shows the logarithmic error of
the diagonal staircases of algebraic approximants for a2(0)
(continuous lines), constructed from the perturbation se-
ries for a0, as functions of m, and for some such values
of n for which we can also build intelligent approximant
IA[M, 2M ] (broken lines in that figure). Notice that the
accuracy of a given intelligent approximant is always com-
parable to the greatest accuracy of the corresponding di-
agonal staircase. We draw similar conclusions for other
characteristic values, and for other values of q.

It also follows from the results in Table 2 that
the algebraic approximants continue a perturbation se-
ries beyond its radius of convergence. For example, the
perturbation series for a0 is known to diverge for all
|q| > 1.468 768 613 785 14 (see below), and Table 2 shows
that the approximants converge for much greater values
of |q|.

We have repeated the calculations choosing the per-
turbation series for a10. Results in Table 3 show that the
accuracy of the approximate a2m decreases as |m − 10|
increases and that this effect is less noticeable for smaller
than for larger values of m.

The intelligent approximants give us implicit equa-
tions of the form IA(E, λ) = 0 from which we obtain
either E(λ) or λ(E). It is well-known that dλ/dE = 0 and
d2λ/dE2 6= 0 at a square-root branch point of E(λ) [12].

Fig. 1. Logarithmic error in the calculation of a2(0) by means
of diagonal staircases of algebraic approximants (continuous
lines) and intelligent approximants (broken lines) constructed
from the perturbation series for a0.

Consequently, if the approximants are sufficiently accurate
in a neighborhood of a branch point we should be able to
obtain its parameters from the system of nonlinear equa-
tions [12]

IA(E, λ) = 0,
∂IA(E, λ)

∂E
= 0. (14)

Moreover, if the intelligent approximants provide a suf-
ficiently accurate representation of the multiple-valued
function E(λ) = a(q), then one expects that the ap-
proximants constructed from a2m will give not only the
branch points (a2m−2, a2m) and (a2m, a2m+2) but also
other branch points (a2k, a2k+2) in the complex q-plane.
As an example, Table 4 shows the rate of convergence
of the solutions of equation (14) (with intelligent approx-
imants constructed from the perturbation series for a0)
towards one of the branch points (a4, a6). Table 5 shows
other branch points obtained by means of the intelligent
approximant IA[7, 14] built from the same perturbation
series. Comparison with precise nonperturbative calcula-
tions [9,10] shows that the accuracy of the branch points
(a2m, a2m+2) thus obtained decreases as m increases.
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Table 3. Characteristic values a2m(q) from the intelligent approximant IA[7, 14] constructed by means of the perturbation
series for a10. The second value for each entry comes from a nonperturbative calculation.

q a0 a2 a4 a6 a8 a10

0 −0.05 4.005 15.9994 36.000009 64.00000000 100.0000000

0 4 16 36 64 100

5 −5.802 7.4506 17.0961 36.360908 64.19884239 100.1263692

−5.800046021 7.449109740 17.09658168 36.36089998 64.19884239 100.1263692

10 −13.938 7.7180 21.1045 37.533613 64.80089101 100.5067700

−13.93697996 7.717369850 21.10463371 37.53360634 64.80089101 100.5067700

15 −22.5139 5.0783 25.37500 39.968170 65.82799493 101.1452034

−22.51303776 5.077983198 25.37506106 39.96816628 65.82799493 101.1452034

20 −31.3140 1.1546 27.59455 44.062950 67.34587524 102.0489160

−31.31339007 1.154282885 27.59457815 44.06294865 67.34587524 102.0489160

25 −40.258 −3.5219 27.80523 48.9757870 69.52406517 103.2302048

−40.25677955 −3.522164727 27.80524058 48.97578672 69.52406517 103.2302048

q a12 a14 a16

0 144.0000002 195.95 245.0

144 196 256

5 144.0874476 196.02 250.0

144.0874473 196.0641161 256.0490256

10 144.3502082 196.21 250.0

144.3502080 196.2566275 256.1961748

15 144.7895541 196.53 250.0

144.7895539 196.5780262 256.4416654

20 145.4076591 196.98 250.0

145.4076589 197.0291433 256.7858628

25 146.2076908 197.56 251.0

146.2076906 197.6111649 257.2292849

Table 4. Convergence of the roots of equation (14) towards
the branch point (a4, a6).

M a q2

3 28.7367023964213 −288.912493849802

4 27.3522602213187 −271.604891332361

5 27.3191265168391 −271.299291842535

6 27.3191276740201 −271.299305850403

7 27.3191276740344 −271.299305850470

Ref. [9] 27.31912767 −271.2993058

All the perturbative and nonperturbative calcula-
tions described here have been carried out by means of
Maple [13]. For example, we obtained the coefficients of
the perturbation series for the characteristic values and
the intelligent approximants in exact analytical form, and
then calculated the roots numerically by means of the
command fsolve. In order to solve the system of nonlinear
equations (14) we resorted to the Newton-Raphson algo-
rithm. Setting the precision of the floating-point arith-
metic sufficiently large, one diminishes the unwanted ac-
cumulation of round-off errors.

4 Further comments and conclusions

It is not our purpose to put forward the best method for
the solution of periodic eigenvalue problems. Perturbation
theory is not the fastest or most accurate approach for
such a calculation, even with the aid of algebraic approx-
imants. In fact the simple nonperturbative method men-
tioned above is preferable for all those calculations. The
aim of this paper is to call attention on the curious and
not so well documented fact that under certain conditions
algebraic approximants enable one to obtain several eigen-
values from the perturbation series for one of them. More
precisely, present results strongly suggest that algebraic
approximants, and in particular intelligent approximants,
provide adequate description of the multiple-valued func-
tions whose branches are the eigenvalues of periodic differ-
ential equations. This feature, also encountered in other
eigenvalue problems [3], may be useful, for example, when
the perturbation series is the only approach to a physical
quantity.

We have drawn similar conclusions from a well-known
perturbed rigid rotor [14], but we do not show those
unpublished results here because they do not add any-
thing new to the present discussion. We believe that the
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Table 5. Branch points (a2m, a2m+2) from the approximant IA[7, 14] constructed by means of the perturbation series for a0.
The second value for each entry comes from reference [9].

m <a =a <q2 =q2

0 2.08869890274970 0 −2.15728124084033 0

2.08869890 0 −2.15728123 0

2 12.7997162446345 2.76304491692944 0.719587820073328 52.8210579760997

12.79971624 2.76304492 0.7195878054 52.82105792

4 27.31912767403 0 −271.29930585047 0

27.31912767 0 −271.2993058 0

4 33.5401564323667 6.362518783972 157.14271175421 279.545558315172

33.54015643 6.36251878 157.1427118 279.5455584

6 52.0253450 5.55189445 −680.0891251 628.197253

52.02534500 5.55189444 −680.0891251 628.1972535

6 64.21313050 10.43474553 771.1220885 809.8534122

64.21313050 10.43474552 771.1220883 809.8534127

8 80.660 0 −2285.45 0

80.65826424 0 −2285.410357 0

8 86.7946 12.6983 −899.01 2243.272

86.79479850 12.69861754 −899.0235017 2243.276892

8 104.7906 14.8376 2294.777 1778.871

104.79053631 14.83777144 2294.771957 1778.873182

10 118.8 8.4 −4289.0 2270.0

119.40038738 8.20296334 −4318.046781 2295.130833

argument above for Mathieu’s equation is sufficiently clear
to make our point.
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